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FINITE DIMENSIONALITY [N THE COMFLEX GINZBURG-LANDAU EQUATION
C R. Doering, J.D. Gibbon, D.D. Holm and B. Nicolaenko

ABSTRACT: Finite dimensionality {s shown to exist in the
comp'ex Glinzburg-Landau equation

A = RA + (1+iv)A - (1+ip)AlAl’
t XX

periodic on the interval [0,1]. A cone condition is derived
and explained which gives upper bounds on the number of Fourier
modes required to span the universal attractor and hence upper
bounds on the attractor dimsnsion itself. In terms of the
parameter R these bounds are nou large. Forljpstanco. when |ul =
V3, the Fourler spanning dimension is O(R '"). Lower bounds
are estimatad from the number cof unstable side-bands using {deas
from work on the Eckhaus Instabl!ity. Upper bounds on the
dimension of the attractor itself are obtained by bcunding (or,
for lul s V3. computing exactly) the Lyapuncv dimensicn and
Invoking 1 recenrt theorem of Constantin and Folas, which asserts
that the Lyagunov dimension, def'ned by the Kaplan-Yorke
formula, is an upper bound on the Hausdorff dimension.

9 INTROOUCTION. Daespite the great advances (n understanding the
qualitalive mature of the various blifurcations which nonlinear systems can
indergo, the main results have generally been confined to finite
dimensional problems. The infin te dimensional nature of p d e's has

caused cbvious difficult . es. The qQuaestion of whether ostensiblv infinite

dimangiora! syatems can, In fact, behave in a fintte dimensional way
without introducing severe approximations s one which has taxed bctnh
app!‘ed and pure mathematiclians for (w0 decades [t ts usual for

omputational mathematicians to axpand a p d. e in Four'er or other mndes
and, cut of nrecews!ty, Introduce some form cf modal truncation wh .
‘rey ~ar show success in daterm!ning whether s system has apparert’,
stabtlised onty A finite number »f moces by uze of experience arnd sk’
‘@ mAathods they empluy are more on the heuristic leve! Untt) recert
"o rigorous proofs have exigsted which determine whather & sy,stem
juestion g truly firite dimensional ‘he truncat'on necessar,
integrate a g'!ven equatinon nn a machine could eas!ily Introduce bhena.!

which g purel!y an artefact of that trurcation Wwhile a prnof ~f fi. ' m



dimensionality in the full three dimensional Navier Stokes equations is
sti!! beyond us there has been some considerable progress in simpler
oroblems, Indeed, it has been this problem of finite or 'low’
dimernsionality which has started Lo engage the minds of analysts ir the
last *‘wO or three years. The two closely interlinked sets of work on the
establishment of a finite attractor dimension for p.d.e's (1-8] and the

work on so-called itnertial manifolds for the Kuramoto-Sivashinsky (KS)

equation [9-11] has stimulated the activity in this area. The XS
equation
(1.1) u, + uu_ + u +u =0

t X Xx xXXXX

periodic on [0 L], has a 'inear growth rate which is

(1.2) A = k? -k

Discrete moces for which kz > 1 are stable since A < 0. The idea of the
so-called ‘core condition’ which appears In [9] is simple in physical
terms. The system is not in equilibrium since energy is beiny pumped in
through the unstable modes k: < 1. The stable modes Icse ene-“gy by
diffusion with the ecnergy loss increasing as k Increases, ag equation
(1.2) shows. The nonlinear term pumps energy !nNto the higher modes
however, and so the two processes compete. There is however, no a priori
reason to suppose that a firite number of modes can overcome the
nonl inear terms 'n some sense but in fact it turns out that this is so.
The aim is to estimate a value ot N, derived from a cone condition, which
shows when the modes kn for n ¢ N control the modeg for which n E N+|
Thig control, which is achieved through a cone condition, slaves the high
modes to the low modes by means of a global <laving inction @ “he
'nertial manifold ia essentially the graph of this function &: 1t 18 a
smooth Invartant exponentially attracting mani‘old whick contains the
universal attractor On this manifold the p d e s A finite
diment ‘onal dynamica! system This idea of slaving an 'nfinite number »f
degrees of froedom to a finite number 5¢ degrees of freedom establ!ishes a
Jirgct comnection belLwsen INnfinite dimensional problems and the elegant
ang tmportant work of recent years on finitte dimensicnal dynami-a!

systems



This paper will concentrate on showing how to construct a core
condition, therefore establishing the existence of an i{nertial manifo'4d

for the complex Ginzburg-Landau (CGL) equation on periodic bourcary

conditiors on [0,1]):

(1.3) A = Re+BA_ - 741412 7. B€C

This is a simple example of an equation which has a good physical peaigree
which can be used as an archetype ‘.- understanding how p.d.e's whizh
possess rotating wave solutions behave. It too has a bandwidth of

unstaple modes since the growth rate of rotating waves solutions 1§

(1.4) A= R-k

Hence all! modes kz < R are unstable and kz > R are stable. There is a gap
in the spectrum

(1.8) A=A = (2neD)k

whi~h Increases linearly with n. Clearly therefore It s an 13eal
candidate for an inertial manifold calculation.

The CGL egquation occurs as an amplitude equation on long space and
time scales 'n a variety of problems and was first dertved by Newel! and
whitenead (1'4]) wusing the f.nite Dbandwidth corcept. One set of
circumstances is In Taylor vortex flow and convection [12,13,15] where the
coefficients B and y are real. For Polseullle flow [16-18,20] these
coefficients are complex. In the latter case 1. 0 and the equation
blowas up i{n finite time (17-19]), There are, hcwever, two cases when 7y
< 0 [20]. The complex Ginzburg-Landau equation also occurs in studies '~
chemical turbulence (21-21]. The stability of rotating wave solutions to
sidebands hes Jeen studied widely (24-27) and various papers na.e

investigated numerically the possib.lity of chaos and pattern format:@osn

(28-33] Since the intention of this paper ‘s to consider .ar'ous
aspecty of finite dimensional behaviour, we shall choore v, 1) Nl LN
tt will be easiest |f 4o take the equat'on In the form wnere b'aw .p 1leg

nat occur

B A, = RA e (JeIA - (lerpiAla’

while the clrcumstances ir which the complex Glinzburg-Lardau #JuA”™ -

arises 'n the examples above '8 often highly complicated ['S5-'Rl  a 1. »



explanation of why it occurs so frequently in the theory of nonlinear

waves can be given in a few lines. Let us consider a linear scalar
o.d e.

(1.7} W[‘g—t: g—;: p]¢= 0

whose complex dispersion relation is w = w(k,u). M is a smooth function
»f its three independent variables. 4 is a parameter such as, for
example, tre Reynolds or Rayleigh number. The system s unstable when

w. > 0 so there is a neutral curve imn parameter space u = R(k) on which
w, = 0. Ore can think cf linear, oscillating, neutrally stable waves at

the most unstable wavenumber kc being expressed in the form
(1.8) o= A exp{i(kcx-wct)] + c.C.

Now 'et us consfder the nonlinearity of the system in such a way that we
can think of the complex dispersion relation becoming dependent upon the
amplitucs:

(1.9)  w= wlk. oy !4lD)

Sirtuations like this are not unknown, for example in optical fibres, wher~?
the refractive index of the medium s amplitude dependent. This is
equivalent to solving the p.d.e in a modified mode!l form (for example see
(14])

) 3 2
(11 : T— i =— o
0) ”[a*'ax u ¢]¢-0
to take account of the ronlinear terms. If we now introduce a :mall

parameter ¢ defined by c2 = u - “c which show2 how far we are above the
crittcal potnt and then define slow space and time scales X = c(x-cgt) and
T = cll, we can then expand M in a fourfold Taylor serias and have 4
dependent on X and T. Using (1.8) and removing secular terms at O(c‘)
g'ves equation (1.3). [n general, B and 7 will be complex. The number R
‘s now a measure of how far the system in question is above criticaltity on

these length and time sucales and iz therefore used as the main bifurcation

parameter in the problem. The correct space and time scales to use '~
tre CGL equation are the slow X ane T variables de’inmed above bu'. 'n
Yitire secttions we w~il! revert to the usage of smal! x ana t ‘-r

s\mpl\c\v_y

The matn Iidea of this paper ‘s to show ‘hat the - mp’ e«
Sinzburg-Landay equattion s low dimensional’ .~ the sense 't nag a ‘'~ ‘&
“ourter spannirg J'mersior see §2) and a finite attractor d'mens'or 4

"o achisve these res.ilts, wa will use the idea of ‘rerttal man: ¢ .5



developed in [9] for calculating the Fourier spanning aimension and the
methods developed in [(35] (see alsc [1-8])for calculating the attractor
dimension. The work discussed in this paper on both the cone condition
and attractor dimension has been developed by the authors of this present
paper in [36] and on the attractor dimension in ([37]. Following cn from
this, finite dimensionality has been shown to exist a saturable form of
the CGL equation which cccurs in the ring laser cavity [38]. The
ubiquity of the complex Ginzbur3j-Landau equation makes i{ts behaviour
important in the sense that it would be desirable to know how this
equation works before trying the harder and more generzl systems from
which it derives in the first place. In §3 we will show how these

results fit in with previous work on the sidebana instability [24-27].

§2. THE CONE CONDITION FOR THE CGL EQUATION. The idea of a cone
condition, introduced in [9), enables us to estimate the number of Fourier
modes needed to span the attractor Following [9] we will firstly try tn
explain the general ijdeas behind this and then go on to prove that there
is tndeed an absorbing set in the Hilbert space K = L2[0,1]. When we have
cbt s4ined bounds on the necessary norms we w |1 then establish the
estimate of the number of Fourier modes needed to span the attractor.
These Fourier mocdes will be eigenfunctions of the Leplacian so let Us
suppose that we reg.ire N of them. We will define P, to be a projection

N
operator which projects solutions on the universal attractor onto the

first N Fourler modes Iknl s kN. ON- I—PN is the 1nfinite dimens‘onal
projection onto all other modes Iknl e kN*l' The {dea of =2 'cone
property” 1is a means of controlling thr high modes by the low modes.
Figures 1 and 2 give tne !dea. Let A ana A’ be *wo solutions on the
Jniversal attraclor. Cefining a = A"'-A with p = PNa and q = Ova, w& Can
construct a cone by means of a quality L which is definea by

t2.1) L = llqu: - I!pll:

Inside the cone we define L > O, on the cone L = O aru outside L « 1
el demotes the norm in K & Lz{O.II‘ wWe now note that outside he cone.
when nqn: < Hpu; . the high moden are controiled by the low modes s:rce

low wave ~umber modes can vanish only when high moles -anisgh we can oy

de: ‘ne a furction(see 1))

(2 2) ¢ Py(attrac(or) ¢ P~K 4 ONK



PyH

Figure 1: Illustration of the cone condition, At each point along a
trajectory A(t) a cone can oe drawn and all other trajectories
(such as A'(t)) are excluded from the nteriors of these cones,
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Figure 2: The cone condition on the attractor implies that the

projection (PN) of the atiractor onto the finite dimensional

space (PNH) is one=to-one onto ity image, and hence
invertible there (& = P "),



which maps a subset of tre finite dimensional space va, i.e.
PN(attractor). fnto the remainder of the configuration space. Hence we

can write

(2.3) oA = Q(PNA)

and the nature of the finite dimensionality can be seen by a slaving of
the high modes by the low modes

(2.4) A= PNA + ONA = PN + Q(PNA)

low high
modes modes

We can at least give a descriptive account of how the cone idea allows a
projection which is well defined {.e. (2.2) yields a unigue value for ¢.

In simplified terms, let us think of two solutions A and A" crossing in
configuration space such that they may not touch but there may be at least

one point or one which lies vertically above or below a point on the

other. At this point PNa = 0 and hence L > 0. This can only occur
inside the cone by definition and there is no unique projection at these
points. However, outside the cone we can project the attractor one to
one onto its {image. The task is therefore, to find N such that we can
make L < 0 as t - o, :f we can achieve this, then asymptotically we can
achieve a projection onto N Fourier modes. One can think of the cone

construction as a way of ‘combing’ the attractor as t 3 o such that a

one-to-one projection can be achieved with unprojectable ‘entanglements’

occurring only inside the cone. An inertial manifold is a smooth
(Lipschitz) exponentially attracting invartant manifold which
contains the universal (giobal) attractor. Restricted to this

manifold the CGL equation is equivaient to a finite dimensional
dynamical system. This projection now allows the universal
attrastor to be spanned by 2N+1 Fourier modes. This provides an upper
hound on the attractor dimension although this estimate is not necessarily
good. With » cone condition, it is possible to use standard invariant
manifold techniques, such as centre minifold methods {34] to perform the
required extension to an inertial manifold. This suggests the
identification of an inertial manifold, hich Iis the graph of the
extenszion over the new domain, as a global centre manifoild. The
geometric Idea of an inertial manifold is given in Figure 3 and can be

nursued in references (1-9])



Figure 3:

INERTIAL
MANIFOLD

PnH

AN

EXTENDED
DOMAN
OF ¢

An inertial manifold is the extension of the domain of
definiti. of ® off of the projection of the attractor,
preserving the reduced dynamics. The graph of ® s an
invariant, exponentially attracting manifold in the
configuration space that contains the universal attractor.



The idea of a cone condition, explained above, enables us to &«stimate

the number of Fourier modes needed to span the univesal attractor but

before we explaln how to do this, it is necessary to prove that there
exists an ‘absorbing set’. Let us define a mass M(t) and an energy E(t)
by

1 1
(2.5) M = f 1Al *dx E = I 41 ax .
0 0

Differentiation of M w.r.t. t and substitution of At and Atﬂ from the CGL
equation gives

1
(2.6)  AM, = RM - E - ! 1Al *dx

0
whence the use cf the Cauchy=-Schwarz inequality gives
(27) KM, s RM - E- M sRM -
s0O
(2.8)  M(t) s R[1-exp(-2Rt)] !
Hence In our Hilbert space K » L2[0.1]. the flow contracts into a bal, of
radius R(o) = [(1+0)Rl” in a finite time t(oc) = - [ln{o/1+0])/2R. In
other words, M s R as t » » , for all v and u. When we turn to E, a
calculation whose details we will not give, we have to make a distincttion
between |p| > V3. We find that

(2.9a) Iim E s (i1+0)%R? MR
t o0
(2.90) lim E s &°R3C1+[1+8 2(1+8)/R)%)? u > V3
]
where
(2.9¢) 8 = max(0,-2+|1+iul|)
It s now necessary to find a uniform L® norm for A(x.t). These turn out

to be, for v arbitrary (see [36])

lim uan: = lim suplA(x.t)Iz

t 5o tom Xx
(2.10a) R + 22 lui s V3
s
2 -2 1
(2.10b) R + 28R°(1+[1+8 °(1+8)/R]") |ul > V3

It is also possible to find bounds when v = 0 and p arbitrary (36}
Let us now return again to the cone condition. In terms of a=A"-4. the
difference between two solutions, we have

(2.1%) a, = Ra ¢ (1+ivia__ - (leip)(A“ 147 1% Ar1al?)



Operating on this eguation with PV and ON to form p and q, we have

(2.12a) p, = Rp + (1+iv)p__ - (1+ip)Py (4" 47174141

r
m
o
o
.
'

= Rq + (1+iv)g, - (I*iu)ON[A’IA‘Iz-AIAlzl

»
Multiplying (2.12a) by p . integrating over (0,1] and taking the real part

and repeating the process for (2.12b), we obtain

1
L, 3 2 2 : of

(2.13a) X 5T quz = Rllpll2 + Re{(1+iv) fop pxxdx}

! » P 2
- Re((1+ip) f p P L4714 1%-4141 ) ax)

R
1

(2.136) % & uqu? = Riqn? + Re{(1+iv) f q q__dx}

' at 2 2 0 XX

1
- Re((1+iu) f q~0v[A’|A’I2—AIA|2]dx)
0 i

2 2
In order to construct a differenttal inequality for L = uquz—npnz, we need

to estimate not only the nonlinear terms but the terms:

v, . 1 R
(2.14)  Re{(1+iv) j (q'q _-pp ldx} = f (lp_1-1q 15 dx
o XX XX 0 b4 X

tHowaver, we know that on periodic boundary conditicns

1 i
) 2 r 2 ¢ 2 2 2
5 .
(2.15) J.o |px| dx s kN Ilpllz, .Jo [qx| dx = kN*l llqllz

The right hand s'de of (2.14) now obeys the inequality

2

1
2 2 2 2 2
f2.16) j (lp_ 1°=1q 17)dx s k,,” lipl. - k tqil
o X X N 2 N+1 2

Subtracting (2.13a) from (2.13b; and using (2.16) we have

{

ro

3 2 2 2 2 2
—_— - - ( - -
17) % 37 (uqu2 "p”z) s (R kN ).uquz Hp”z) (k

+ nonlinear term

Now we can observe how the gap competes with the nonlinear ‘terms

r2.18) KLt s (R—sz)L - (QN*I)klznqnz + nonlinear term

"nere are two points here, Firstly, as we explained in {1, stable moies
sccur when kNZ > R Hence the siqgn on the nonlinear term [ is negat: .=

If we can bound the noniinear terms in terms of an; thk~n we can v, ar. ome
*hese terms by choosing N large enough. Bounds on tha nonlinmear *armq

can be found in the following way:

l v
2 19)  Nonlinear term = - Re/(1+tu) f (q uv—p'PV]{i’l4 RECTRTRENT
, :



Using the fact that the projections are caif-adjoint, we find

1
(2.20)  Nonlinear term = Re((1+iu I (@ -p A ta - Han
4]

Part of the integrand of (2.20) can be written as
(2.21) a7 141%-4141% = a1 121t QA = (priat 1% 1A1D v a"an

and we find chat
1

(2.22) Nonlinear term = - Re{(1+¢iu) f [-|q|2+ lp.2 - gtlm(q'p)]
Jo

x

1
(1A 12 + 141D + (1+ip) j (p"-q'z)AA'ax}
4]

Wn

2 2 2
204 hphy + 4uHANm J iqlipldx

‘ L2 2 2
+ U viplCipt )+ g nan

7

nan? (20p03 « duiqu iph o+ Viep® (ipn? e wand))

Consequently we have

(2.23) 4L, s (R-k~2)L - (2N+Dk Ciqn

2 2 ) 2 2
+ IIAIIcn (."_’Ilpll2 + 4ullpl|2llqll2 + Visu (Mp"2¢nqnﬂ)

Inside the cone, when an: > Hpﬂz (L > 0) we :an choose N lzrge encugh

such that
" ‘p_p 2
(2 24) KLt < (R kN )L

and so L |s decreasing as t + ® for thcse modes (stable modes) for which
2

kv > R When L reaches zero on the cone, we find that L' < 1) and
to L decreases furtisr to become negative, Once negative, it must ~emain
negative. In summary therefore, if we choose

(2.250  2n N > max(R. 0A1? [1evien o210l )7k - Kk )
max [ ] 1 1

where kl|s the fundamental wave number, then trajectcries i1nside ‘“ha

absorping set which are inside the cone are expelled from the cone @ an

exponential way as t + o and once outside remain ocutside we nate *that

we have the estimates fcor nAu: in equation (2 10) This astimate ‘s an

upper bound on the attractor dimension uniform in v Equatton (2 '
2

‘d
shows that this upper bound goes Ilike R’ for |ul s v1 and like R° o



tul > V3. In fact in [36], we find that Mmax goes like R when v = O *ar

all u. These bounds are obviocusly dependent uoon the estimates for 41

8

53. THE MCODULATIONAL INSTABILITY: LOWER BOUNDS ON THE FIURIER SPANNING

AND ATTRACTOR DIMENSIONS. The CGL equation is well known to possess
so-called rotating wave solutions. These must be contained in the
universal attractor - indeed they form a lower bound on both the Fourier
spanning dimension (D) and the universal attractor dimension (d). These
solutions take the form

(3. 1a) An =a, exp[i(knx-wnt)] n=20.12 ..

(3.16) w_ = Rv o+ (uewdk
(3.1¢) ta 1? = RY 2k

The first set of bifurcation points are Rx = an (kn = +2nn) for e&ch
n, including n = 0, which grow off the zern solution. Although these
solutions appear trivial, they are expressed in terms of Fourier modes and

$o they give a lower bound on the Fourier spanning dimension

(3.2) D=0 = 1e2R*2n)

cach Fourier mode kn may be stable or unstable to a neighbour k. To
test for this we use the method described in Stuart & DiPrima (26] for
discussing the Eckhaus instabilty {24-25]. This requires us to look at
the stabil.ty of An in the following way. we write

(3 3) A= An(x.t)(1¢8(x.t)l

we row substitute this into the CGL equation

'34) A, = RA+ (1+(v)A__ - (1+ip)AlAl’
t XX

and l!inear'se in B. This gives

(36) B, = (1+tv)B__ + 20(1+iwk B_ - (1+tu)la | '(Be8)
t XX nx n

7o test fo the stability of a wavenumber kn against ancther km' we write

B as
(3 6) B=pi(t) exp( th x) ¢ p (t) exp( -tk _x)
and obtatn for p*,p_
.o . .o

2
(7 va) d [p ] . [-c ‘(l'lu)lanl ] [p ]
i1t - 2 -
p p

-(l¢|u)|a“| -

(31 Tb) whare ¢ o= (letvdk t e 2Tevdh ke (lergdla |
L n m n



Neutra! curves canm be found for the Hopf bifurcation in (3.7) whicr 2cz.r

when

2 r|an!z*kmz)z[(l*vz)km2*2EIani2]
:9&) ‘”tn =

Cla 12k D2« (uia 1? + vk B
n m n

(3. 8b) € = l+up

(3.8¢)  {a_|® = Rk ®
n n

The sign of € is important since it determines the asymptotic Jdirection of
tre neutral curves in the kn2 versus R plane. [n the following *wo
diagrams, (f a point in the (Rx,lknl) plane |ies above the mth curve ther
the nth rotating wave is unstable to the mth sideband and {f the point
lies below, it is stable. Figure 4 is plotted for values u = - V3, v =
-30¥3 so that € = 91 and Figure S has values u = - V3, v = +30 V3 so € =
-89.

The general features are as follows. when v 1Is large and negative
the curves are bunched up along the diagonal and each rotating wa
becomes |inea~ly stable as R is increased. This region (e > 0) ts known
as the modulationally stable regime [25] since the k = 0 solution is
always stable. Qur calculations hers general se the results in [(25]
which was based solely on stability of the k = 0 mode (spatially
homogeneous states) - our results here are valid for any k”‘ [n the

limit of v + - ® the relation between knz and R be - 2mes ! inear

(3.9)  k_?a R+ 3k -2k _(Redke )?
n m m m
independently of wu. As v is 1ncreased, the curves unfold. when 4 =
2 1 1 2
13.10} kn "3 R + F3 km

again incependentiy of u.

As v increases such that « bescomes negat!ive, the curves turn over ang

cut the R-axis. This ts now the modulationally unstable regime as each
rotating wave will eventually become unstable to any km as R is increased
As v Is increased the interszection noints through the R-axis get closer to
the origin, Their point of closest approach occurs at

p
{3 11) voa - (1+V(1eu’ )] /p
Ag Vv s increased past this value thea intersection points start 'H mo.me
away from the origin [t iz at 2 value of v given in (3 11) *hat +re

spattally homogeneous rotating wave solution (k « 1)) hag 1ts maems

number of unstable directions. Other ramarks about the rotating .a.es
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the (k, vR) plane tor parameter

5
RY2/27n

Neutral stability curve n

4;

=30 /%,

u=-vy v

values



RV2/27

Figure S: Neutral jtability curve in the (k, yR) plane for

w3 ,vs 30/3.



zan be found in [36].
The value of R at which the spattally homogeneous rotating wave
cecomes unstable to side-band perturbations of wavenumber km is

3.12) R = - knz(l¢u2)/2¢

wWe now proceed with the task of Lhis section, to develop lower bounds
on the attractor anda Fourier spanning dimensions. First, for the
attractor dimension.we note that the linearized stability arnziysis
({ncluding neutral modes) gives the dimension of the unstable manifold of
each of the rotating wave solutions. For each specific set of the
parameters u and v, this set of dimensions for the rotating w~ave solutions
can be determined as a function of R simply by counting, using the plot of
neutral stability curves. For this counting it must be noted that
anywhere in the physically relevant region in the (R.k’) plane, 1.e. R ®
k'. the sum of the real parts of the two eigenvalues of the matrix in

(2.8) is negative:
(3.13)  Re(A) + Re(r,) = - 2(|an|'ok_*) <o.

Thus, at least one of the eigenvalues has a negative real part. Thisg
meang that when a rotating wave iles in the unstable region of a
particular side-band It has only a one dimensional unstable direction
associated with that side-band. Hence, in the counting procedure we add
one to the unstable manifold dimension for each unstable side-band.

The dimension Drot(R) of the unstable manifold for the trivial
solution A = 0 is given in equation (3.2). Althougn tn any part'cular
situattion the counting procedure described above can be carried out for
any specific rotating wave and set of parameters, there is no convenient
axplicit expression for the dimension of the unatable manifold of an
arbitrary rotating wave solution. However, the spatially homogeneo.s
rotating wave (s amenable to computation, and the maximum of ity and the
trivial solution’'s unstable manifold dimensions provides a lower bound on
the universal attractor dimenslon, We will use this lower pound in what
follows.

In the modulationally unstable case (€ ¢ ()} the number »f unstable
directions for the spatially homogemneous rotating waeve ‘s computed from
13.12)

(318) moe [C-20- (TN ¥RY 20))



Since the rotating wave itself is ocne-dimensional, a lower bound on ‘"e

Jniversal attractor dimension is
(3.15)  d = max(1+[(-2e/(10v? ) R 2m 1, D (R))

we may bound this lower bound from abnve, uniformly in v, by recalling
that the closest point of approach of the intersections uf the neutral
curves and the R axis to the origin occurs for v = - (I*(I*uz)ﬁ)fu

Hence, a lcwer bound on the universal attractor dimension is given by

(3.16)  sup d = max(1+( (¥ (1ot R 200 0 (R))

v
For tul s v3, the second term in (3.16) is always greater than or equal to
the first. when Iul > V3 the first term can dominate the second for
some values of R, since V3 is the critica! value of u for which there
exists a v such that the homogeneous rotating wave is unstable to a
side-band bafore the trivial solution goes unstable to the second (k = 2v)
rotating wave as R is increased from 0. When [(u|l is larger than V24 the
first term in (3.16) is always larger than the second. wWe summarise
these lower bounds on .he universal attractor dimension, uniform in v, as
follows:

(3.17a) sup d ® 1+2(R*/2n] | lul s V3
v

(3.17b) sup d & max(l*((uz/(!*(1¢u2)x))(Rx/2n)l. Drot(R))

v V3 < (ul s V24
(3.17¢) sup d ® 1+(¢uicteCrex ) AR 201, V24 <
(%

we remark that the border-line situation |u| = V2 has appeared in the
previcrug section In the nonlinmar analysis.

Next, to obtain lower bounds on the Fourier spanning dimenston [ we
utilize some different features of the neutral stapility curves obtatned
from the side-band stability analysis. As oafore, we could take 'he
peclestr lan route for each value of the paramgters and simply coun!, bul we
seek analytic expressions - and especially some evidence of uniformity In
the parameters. Along the diagonals in Figures 3 and 4, whers thae
rotating wa-es come into existence, tha intersections of the neytra:
curves occur In a regular way: setting lanl2 = () in (2 8) wa ha.e A“: -
km2/4. Thus, when the nth rotating wave comes Into existence, ' '

ungtable (or neutral) to the first Zn side-bands It immediate’',



stabi'izes to the 2nth side-band, although it can go unstable to that
side-band again as R s increased. Away from the diagonals in Fig

where Ianlz > 0 the matrix in (3.7) is not diagonal, so it takes both

Fourier modes (:km) to span the relevant unstable direction. An estimate
on a lower bound for the Fourier spanning dimension - really an upper
envelope on any lower bound obtained this way - is then given by

(3.18) sup D 2 > l+3(Rx/2n]
K.V

where the 3 comes from he fact that the highest wavenumber thatl supports
an unstable direction ~ the nth rotating wave at R = knz is 2rn(n+2n):
this counrt includes both the number of Fourier modes required to span all
the rotating waves, as wall as those required to span the.r unstable
directions. This count is a strict lower bound for each u and v at the
points where Rx/2n is an integer and it is convenient fcr fits uniformity
in the parameters.

The expression (3.18) is not an accurate estimate deep 1n the
modulationally unstable regime where a rotating wave can be unstable to
many side-bands. An improved estimate is obtained by taxing over the the
results above for the dimension of the unstable manifold of the k = 0
rotating wave, Since there are !n general two Fourier modes required to

scan each unstable dimensior, one may also invoke the rigorous lower

bounds

(3.19a) sup D & 1+2/R%/2n] lul s V3,
1%

(3.19b) sup D = 1+2((u2/(l¢u2)x))n(Rx/2n)l . lml > v3 .
v

§4. THE KAPLAN-YORKE FORMULA: UPPER BOUNDS ON THE ATTRACTOR OIMENSION.

In §2 we used the cone condition to find an upper bound on the Fourier
spanning dimension, This, of course, provides an upper bound on the
attractor dimension althaugh it is not necessarily a good upper bounu
we would expect that direct ccmputation of the attractor dimension through
the Kaplan-Yorke formula [35] should provide better estimates. The
central result we will use is the theorem of Constantin & Folas [1] which
asserts that the Lyapunov dimension (dL) defirned n [35]) with the global
Lyapunov exponents, is an upper bound on the Hausdorff dimension (d") af
the attractor We will briefly review the concepts of fractal an:

Lyapurov exponents, the Kaplan-Yorke formula and pro-ide & hewristic



justification of the theorem of Constantin i Foias in terms of the fractal

dimension dF' It will turn out that wher we compute dL

case |ul s V3, the lower and upper Sounds chincide, therefore giving the

exactly in the

attractor dimension exactly. we \vill also grovide rigorous upper bounds
on dL for lul > V3.

The fractal dimension of a bounded set 1:: & matric space sxtends the
usual notion of dimension in euclidean spacsx. Let N(c) denote the
minimum number of balls of radius « > O requi~ead *to cover a compact set.

For a set of an integer dimension d, the numbe~ N(c) Is prosortion to c-d

for small c. The fractal dimension (which need noct be an Iinteger) is
defined by
(4.1) dp : = Lim log(N(c))/log(t/e}
c,0
Hence dF is the scaling exponent for the "volume" displaced by the set on

a scale c.

The Lyapunov exponents on the attractor of a dynamical Ssystem
describe the exponential rate of divergence of trajectcries that start at
nearby points, A positive Lyapunov exponent indicates sensiti{ve dependence
on initial conditions and hence chaos, for in this case the prediction of
a trajectory after & long time requires an ewponentislly accurate
knowledge of Iits iritial conditions. To compute the gliobal Lyapurov
exponents, one congiders the linearized flow along a trasjectory on tne

universal attractor. For a solytion A(t) « X o! the CG.E
2
(4.2) atA = RA + (l+lv)A!x - (l+iu)lAlI"A |
the linearized flow of the vector £(t) e« X, along A(t), is defined by
(8.3) 8,6 = RE » (1+1v)E, = 201+1w) A1’ = (1otw)A'E

wWe denote the solution F(t) of (4.3) as L(l.Ao)E. where £ & the initia’
condition and ‘o is the Iinittal condition for the solution of the
nonlinear flow (4.2). The first globa! Lyapunov exponent |s the rate of
asymptotic exponential growth of the length of a vector developing
according to (4.3), maximized over all solutions A(t) on the unliversal

attractor and all possible directions of £:

(4 4) Al: ® |im sup t‘llog(sup sup uL(t.AO?EM)
t A, WENsI



(the supremum wver Ao is restricted to initia' conditions on the univesal
attractor). The second global Lyapunov exponent {s determined by the
largest asymptotic growth rate of areas evolving according to the

linearized flow:

(4.5) A+A: = limsupt ' log(sup sup IL(t.AJE A L(t,AJEN) .
172 0° "1 0" ™2
t .40 II:IIISI
S‘milarly, the sum of the first n global Lyapunov exponents governs the

largest exponential grow'r rates of n-~volumes, according to

(8.6)  A+.. #1: . up t 'log(sup sup NL(t,A)E A ..AL(t.A)E N)
1 n (1M 0 ™n
° A e Htsl
o '
In equations (4.5-6) above the magnitudes of the volume elements are given
by the norms on the corresponding spaces of n-forms on H. That is, for

vectors 51~51 e H

(4.7) "ElA...AEn"z “ <€1A...AE . Eln...Aﬁ >

n n

(ElA...Aen.clh...Acn, a detd with Hij = ‘51‘51’ .

where <.,.> ‘s the {nrer product of ¢ (in our situation,
1 [ ]

<§,> = I dx€ (x)¢(x)). Loosely apeaking an n-vol'ume Vn around the
()

attractor develops according to Vn(t) = Vn(O)oxp[(Al+.. +An)tl. The

Lyapunov exponents obey the ordering Ax z Az T ... )@

The Lyapunov dimension of the attractor, dL' is defined by the

following procedure. Congider the integer m such that

(4.8) Al L I A. ® 0, but Al L I Anox <0

Then dL |s de’ined by the Kaplan-Yorke formula

{4.9) dL: em (Al ¢ L+ A.)/IA.’lI

Note that A < 0 and -A >A ¢ ..., ¢ A 30 that m s d < m+], and d
m+l A+l 1 [ ] ! L

is rnot an~cessarily an integer. The Lyspunov dimension would seem to give

an upper bound on the fractal dimension, in view of the following argument
(34,386]. With m chosen according to (4.8), consider a cove~ing of the
attractor by me! dimensional balls of radius ¢ > 0 {(assuming thta this can
be done), and let N'(c) denote the number of such balls raquired. Then
after a time t, the ‘mages of these balls under the nonlinear flow (4 !

wil)l sti)) cover ‘he attractor, but they will be transformed (nto mel



dimensional ellipsoids of principal axes ccxp(Alt).....cexp(km+ltL
Ignoring geometrical factors, it then takes on the order of
N’(c)exp(A 0...+A.-nAn+1)t smaller balls of radius cakm+lt to cover the
attractor. Since this is by no means the fewest number of such balls

(denoted N(ceAn 1t)) required to cover the attractor, we have

+

(4.10) N(ceA.

+1t) E ] N’(c)exp(Al+ - +An-nAn+1)t

Hence, according to (4.1),

(4.11) dF s :i: Iog(Ncexp(A.+1t)))/Iog(c'lexp(-hm*‘t)}

-1 . _ _,-1

- lin(A1+...+An-nA.*1+t logN’ () ]/( Agat loge)
t o

= dL .

We stress that this argumerit is merely heuristic and this result has not

been proven rigorously. However, Constant'n and Folas [1] have
rigorously established a related result, 1.e. d" s dL' even in certain
Infinite cdimensional cases. Irn general dF z d". so the reasoning above

is consistent with the rigorous result.

We now proceed to the computation (or estimmtion) of the Lyapunov

exponets for CGLE. The iinearized time development of an n-form
Ez(t) A ... A E(t) is given by
(a4.12) (d/df)el(t)A...Afn(t) = (dﬁl/dt)A...AEn ¢ ...+ ELA...A(dEn/dt)

= F(t'AO)Elct)A"'AEn(t) + ...+ El(f)A---AF(t-Ao)fn(f)

where F(I.Ao) is the generator of the )inearized flow operator L(t.Ao)
|. e,

(4.13)  F(t,A )€ = RE + (1+11)E _ - 201+ |ACt) 1% - (1+iw)act)’e’

and A(t) is the solution of the CGLE (4.2) with inittal condition A .. Let
Pn(t) denote the projection of K onto the span of El(t).....En(t). Then
since Pn(t)El(t) we may rewrite the time deielopment of the n-form
Ex(t)A"'AEn(!) as

(4.18)  (d/dt)§ (t)a...AE () = F(t,A )P (1)E () . A (1) + ...
+ € (A AF(t, A4 )P (£)€ (1)

The time derivative of the n-volume Vn spanned by Ex(t)""'En(') is then
given by



2
(4.15) (d/dt)vn 2l/n(d./cit)l/n = (d/dt)nslA..,Asnu

£
(d/dt)<,lA...A€n, ElA...AEn>

2 Rc(<(d/dt)(ElA...AEn). ElA...A€n>)

2 Re(<F(t, AP (1)€ (IA. .. AE (1), En . .AE >+ ..

L.t <€1A...AF(t,Ao)-Pn(t)€n. EIA...A€n>)

2 1§ . . A€ N Re(Tr FCt, 40P (1)),

where Tr F(t.Ao)-Pn(t) denotes the trace o the finite ramk operator
F(t,A°)~Pn(t). This trace formula, i.e., the last step in (4.15) above,
may be proved in general by writing the ii‘s in terms of the orthonormal
vectors spanning Pn(t)R, It is derived in the context of Lyapunov
exponents in (1], and it s trivial in the case that the Ei‘s are
eigenvectors of F(t,A 3°P At). Solving (4.15), we ocbtain the time

development of the volume V A

t
(3.16) v (t) = V_(0) exp(Re( fods Tr F(s.4 )P (5)))

From equation (4.6), the sum of the first n global Lyapunov exponents may

be expressed

(4.17) A+, .+A = lim sup t Yloglsup sup x
t 0 Ao "61"51

t
< exp(Re( f ds Tr F(s. AP (s)))],
0

where, as before, the supremum over Ao is restricted to the universal

attractor. We remark that although the £, 6's are not explicitly present

{
in (4.17) above, they enter tiie formula via the time dependant projection
Pn(s).

A lower bound on the sum of the first n global Lyapunov exponents is
immediatel!y obtained by noting that Ao = 0 is contained in the universal
attracteor and the nonlinear solution with this initial condition is

Alt) = 0. Thus,



t
(4.18) sup sup exp(Re( I ds Tr F(s.AO)Pn(s)))
AO ”51”51 0

v

t
sup exp(Re( I ds Tr(s,O)'g (s)))
g IS 0

[\

t
exp(Re( j ds Tr F(s,0)+P’))
0

where Pﬁ is the projection onto the first n Fourier coefficients ¢j(x) =

exp(iij), in the order (j=1) k= 0, (j=2) k, = 2m, (j=3) k, = -2n, ( j=4)

k, = 4n, (j=5) k= -3m, etc. The trace in the last term of (4.18) above
Pl

is easily evaluated:

n
. , . 2
(4.19)  Tr F(t,0)+P’ nzl <¢j,(R+(1*tv)ax )¢j>

n 2
= Z (R-C1+iv)k %),
I J

Hence we have the lower bound

n
(4.20) A+ ... + A = Z (R-k 5
nTog J

Note that this lower bound is indepundent of the {imaginary diffusion, v.
[t is alco wortih remarking that this estimation of the global Lyapunov
exponents {is closely related to the sideband stability analysis of the
rotating wave solutions carried out in 33. [n fact, other lower bounds
on the sum of the first n global Lyapunov exponents can alsc be obtained
by the argument above by noting that one may choose to linearize about any
of the rotating wave solutions. Forr a specific choice of parameters, one
may obtain lower bounds in terms of the growth rates of sidebard
perturbations about the rotating wave solutions. Since we do not have
explicit expressions for these rates, {.e., expressions for the r=al parts
of the eigenvalues of the matrix in (3.7), we will not pursue this ides
here. [t is possible, however, that these considerations could lead to
sharper lower bounds, especially deep in the modulationally unstab'e
regime.

Upper bounds on the sum of the first n global Lyapunov =xporents are
obtained by bounding the rea! part of the trace in (4.17) from above

Let wj be a set of orthonormal vectors spanning Pn(t)K. Then



(4.21) Re(Tr F(t.Ao)'Pn(t)) = Re

-1

<y F(t, A >
wJ ( o)wl

J=1

n
2 2 ' 2 e
- let<wj'<n+ax MW 2=2¢y o A1 p=Re((T+ i<y 47y 2 ]

For any vector Yy € K and any Ao on the universal attractor,

'4.22) ~2<y, 41> - Re((1+im)<y, A% >y =

t 2 2 . 2, %2
-2 j dxl Al 2wl 2-Re((1+ip) j de 4%"H
0

2 2
-4 ! i
s ( u*ll*lul)HAHm kuz
2 2
s SMAIIm Ilel2

where & = max(0,(-2+|1+iul)), and HAH; is the uniform bound on ai!

solutions on the universal attractor (cf. equations (2.10)). Thus,

n
2 2
(4.23)  Re(Tr F(t,A)+P (1)) s JZI W RISIAN v 3 >wj>
A 2 2
s .z <¢J,,(R+6|IA|Im + ax )¢j>
J=1
n
s Z (ReslAl® -k %,
. @ J
J=1
equation (4.19), Utilizing (4 17), we obtain the upper bound
8 2 2
(4.24) A + ... + A s Z (R&nan’® - k%
1 n JT L) J

we first note that 8§ = 0 when |ul s V3, so the upper boung (4 24)
coincides with the lower bound (4.20), thereby yielding the qglobal
Lyapunov exponents exactly! At shown in the last two sections, the
parameter regime |ul s v3 is very special In the CGLE, Here we *nave
shown that {n this ~egime, the global Lyapunov exponents are exact!ly thosa
ccrresponding to the !inearized CGLE. This regime is distinguished here,
as in §2, in that the linearization of the nonlinear part of the (CGLE hras
a negative real! part as an operator on K. We also remark that ‘he
computation of the Lyapunov exponents for |u| 3 V3 does not depend on tha
vimension of the space 'n which the CGLE !s posed: the same formyla hol s
for the CGLE when the spatial vartable x |i{ves In a bounded domain 'n i
with the spectrum of the d-dimensicnal Laplactan treated appropr:ate’',
Secondly, the uniformity of the dimension bounds (n the imaginar

diffuston appears here as it did Iin the last two sections in the —ontmest



of the linear stability amalysis and the Fourier spanning dimension,

we turn now to the computation of dL for the case |u| s V3. The Lyapunov

exponents are
(4.25) A= R - (2m)'(n/2]

where, as before, the bold square brackets indicate the integer part.
The (.yapunov dimension is then computed directly from the defining

procedure, equations (4.8-9). A plot of d, vs. the cortrol parameter

, L
RA/ZR is given in Figure 6. It {s a continuous curve with a

discontinuous derivative at the points where d is an odd integer.

L
Additional'y, we may compute an analytic upper bound on the Lyapunov
dimension which is exact at the points where d

(4.26) d = 2(3R/4n%+1/4)"

L is an odd integer:

The upper tound (4.268) is also plotted in Figure 7, as well as the lower
bound on the dimension given by (2.17a). Note the uniformity in u as
well as v in this parameter regime. The upper and lower bounds are both
asymptotically proportional to RK. and their slopes for large R differ
only by a fctor of V3.

when |u| > V3, we only detarmine the upper bounds on d, (and hence

L
dH) rather than computing it exactly. [f the sum of the first n Lyapunov
exponents is less than or equal to 0, then d, < n + |. From the upper

L
bound on the sum of the first n Lyapunov ex<ponents (4.24), using the fact

that n s 2[{(n-1)/2)+]1, we determine the a sufficient condition for

dL <n+ !l is

(4.27)  (2(n-1)/2] + D(Re31AIL) (20 ((n=1)/2]([(n=1)/2]+1)
(2{(n-1)/2/+1)/3 s 0

From this expression it s easy to solve a quadratic equatton n

{(n-1)/2) and find that

(4.28) d < 2(3(R+au4u:)/4n‘«1/4)” .1

The expression (2.10} for HAW: may be Inserted into (4 .8) above -

ex>ress the upper bound on dL in terms of R and |yl in the case o & 1)
Forr large R, the upper bounds on dH and d, may be summarized as

(4.29%) d” s dL < ;’\/.?(R)‘/'.?n) + 1, lul s Vi, v arnitrary
(4 29b) d, s d, -« (Vﬂ/ﬂ)lle¢3!u|xRx/2n . 2, bl > Vi e hatrars

H L
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Plot nt the Lyapunov dimension vs, effective Reynolds number
for the CGLE with |u| € v3 (piecewise differentiable curve) and
the upper bourd. The piecewise constant curve is the
lower bound on the attractor dimension Dro

Figure 6:
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Figure 7:

log R

Upper and lower bounds on the attractor and Fourier spanning
dimensions versus logR with |u| ¢ /3,



Results can also be found (37] when v = 0 and u arbitrary. Finally, we
remark that In July 1987 at this same AMS meeting we discovered that

J.M. Ghicaglia & B. Heron [39) have also calculated essentially the same
attractor dimension estimates for CGLE as in our §4 and we thank them for

a copy of their paper.
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